Integration Progress and Trends in Miniature Integrated Power Supplies

By Ada Cheng, Louis Burgyan, and Arnold Alderman

Presented by Arnold Alderman

Focus - Integration from the Product View

- Sourcing and management power to processor ICs
- Integration effort began with a selected product:
 - The Power-Supply-in-Package (PSiP)
 - Modular singular and quad converters with associated power passive(s)
 - The Power–Supply–on–Chip (PwrSoC)
 - Modular Single converter with power passive
 - Granular High number of integrated parallel converters
- Potential for higher levels of integration

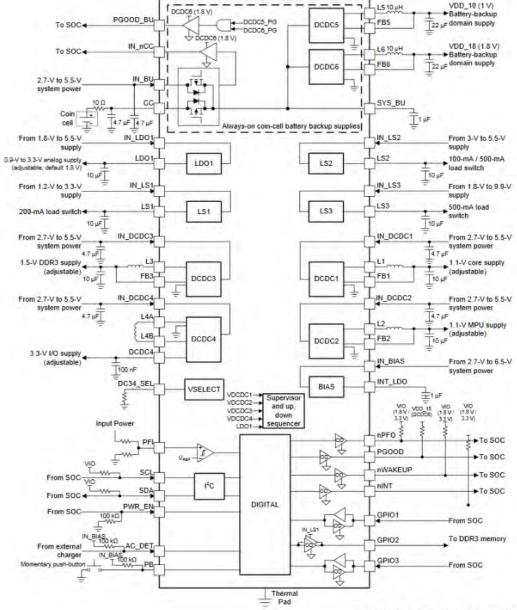
Commencing the PMU Integration

PMU = Power Management Unit

Optional Digital

	Control Function	Monitor Function	Status Function	Driver	LDO	MOSFETs
Level 1	Siı	ngle Contoller I	С	Separate IC	Separate LDO	Discrete
Level 2	Multiple Controller ICs		Separate IC	Separate LDO	Discrete	
Level 3	Single Controller IC with Integrated Drivers LDO		Separate LDO	Discrete		
Level 4	Multiple Controller ICs with Integrated Drivers Separate LDO		Discrete			
	Integrated Regulator(s) with Discrete MOSFETs Di		Discrete			
Level 5	Integrated Regulator(s) with Integrated MOSFETs					

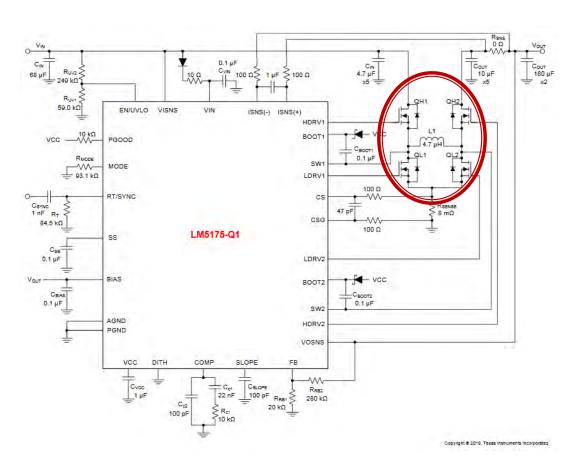
- Tracing controller IC integration needs & growth
- Many loads have multiple power busses to be sourced and managed


The Complex **PMU**

- Three Adjustable Step-Down Converters With Integrated FETs
 - DCDC1: 1.1-V Default up to 1.8 A
 - DCDC2: 1.1-V Default up to 1.8 A
 - DCDC3: 1.2-V Default up to 1.8 A VIN Range From 2.7 V to 5.5 V Adjustable **Output Voltage Range**

Texas Instruments TPS65218D0

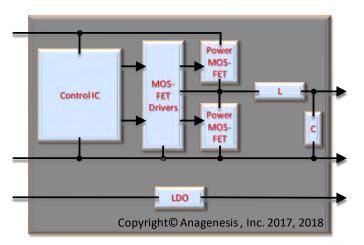
Integrated Power Management (PMIC) for ARM® Cortex™-A8/A9 SOCs and FPGAs


Copyright © 2017, Texas Instruments Incorporated

PMUs with external switches

- Adding the lateral power switches
 - Integrated BDCMOS
- Discrete vertical switches are still preferred in many cases
 - Lateral switches are twice as large as vertical
 - Higher efficiency
 - 2X Higher current density A/mm^2

The Power Supply in a Package

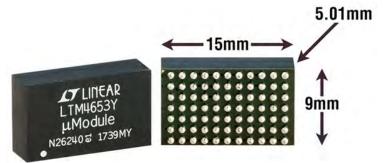

(PSiP)

A high current density package integrated power converter having 1" maximum in any dimension with current density of more than 0.004 A/mm³

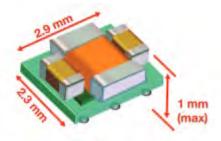
		Cyclone' V SoC
N —		1.1V
-	EZ6301QI	2.5V
-		2.5V
-	Service Service	1.1V
	EZ6301QI	1.5V
		1.8V

Component	Requirement
Controller	Required
Power Switch Drivers	Required
Power Switches	Required
Power Passive	Required (L or C or Both)
LDO	Optional
Digital Control	Optional

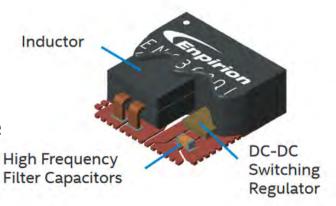
e.g. Used to supply regulated power adjacent to the load (Point-of-Load {POL} power converter)



PSiP

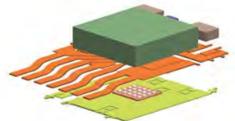

Typical PSiPs

- DC-DC converters over 90% of product base
- Other converters: LED drivers, transceivers, battery chargers...
- Number of suppliers: 25



Encapsulated Organic Substrate Version

Miniature Open Constructed Version

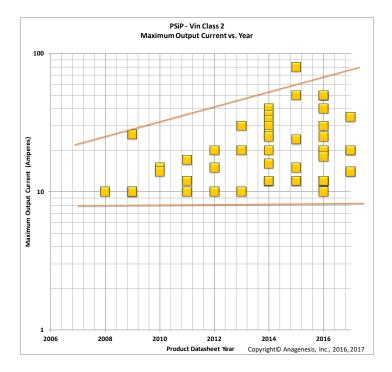


Source: Texas Instruments

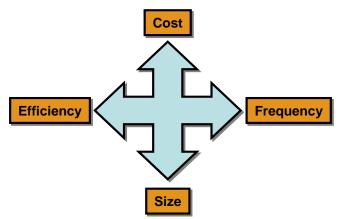
60A, 4.5V to 16V input voltage 0.5V to 1.3V 23mm x 18mm x 5mm QFN package

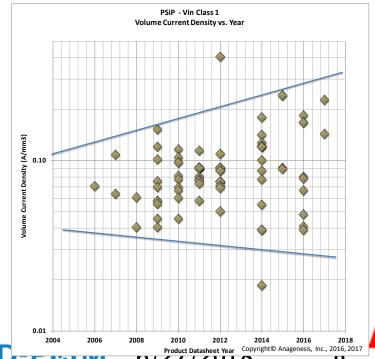
Internal Construction of a Leadframe **Encapsulated Version**




Dual Leadframe Source: Texas Instruments

Added external capacitors don't add significantly to the converter foot print.

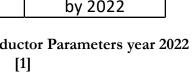


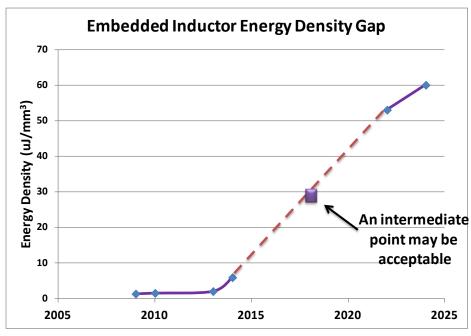


Class 2 products showing the breakdown by maximum-inputvoltage

The PSiP design tradeoffs Class-1 volume current density vs. datasheet year with part number identified

0/2//2010



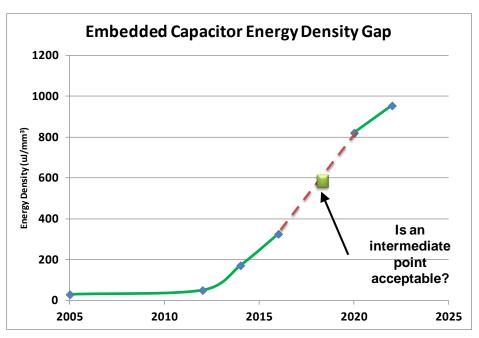

Embedded Power Inductor Gap Analysis

Under Board 3A Ultra-thin 6.26 x 6.25 x 1.82 MM But Embedded Would Be An Improvement

Embedded L Target		
Parameter	Target Value	
Inductance	0.5 µH	
Power	50 W Converter	
Current Rating	50 Amperes	
Frequency	50 MHz	
Package	2512 Package	
L&W	(6.3 X 3.1 mm)	
Thickness	0.6 mm	
Energy Density	53.3 µJ/mm ³	
Target Date	by 2022	

Target Embedded Inductor Parameters year 2022

Copyright ©(Anagenesis, Inc. 2017 all rights reserved


Gap Analysis for the Embedded Inductor [1]

Embedded Power Capacitor

Embedded C Target		
Parameter	Target Value	
Capacitance	100	
Power	50 W Converter	
Voltage Rating	25 Volts	
Frequency	50 MHz	
Package	1206	
L&W	(3.2 X 1.6 mm)	
Thickness	0.95 mm thick	
Energy Density	6424 µJ/mm3	
Target Date	by 2022	

Table 10 - Target Embedded Capacitor Parameters year 2022 [1]

Copyright Anagenesis, Inc. 2017 all rights reserved

Figure 58 - Gap Analysis for the Embedded Capacitor [1]

Early thoughts...

PwrSoC - Modular Chip Integration

- Physical boundaries similar to the PSiP
- All elements are integrated into a semiconductor substrate(s) for high volume low cost or to meet challenging power density or system performance requirements

A high current density package integrated power converter having 1" maximum in an dimension with current density of more than 0.004 A/mm³

Control Power MOS- MOS- FET Drivers Power MOS- FET LDO Integrated Regulator	Integrated Inductor Integrated Capacitor
Copyright© Anagene	sis , Inc. 2017, 2018

Component(s) on Chip	Requirement
Controller	Required
Power Switch Drivers	Required
Power Switches	Required – can be on separate chip
Power Passive	Required (L or C or Both)
LDO	Optional
Digital Control	Optional

PwrSoC - Granular Chip Integration

All elements are integrated into a semiconductor substrate(s) for high volume low cost manufacturing

Comprised of many "grain" converters to create a single regulator output

The Intel Fully Integrated **Voltage Regulator (FIVR)** almost satisfies the definition. **Deviation: Inductor is on** organic substrate rather than inorganic substrate

PCB - embedded inductors bottom view Package Core lave PCB Inductors/ Capacitors in the package PCB Inductors formed in Package the substrate board Processor die Solder bumps Die top side

> Haswell processor, partial bottom view and crosssection of the Package substrate.

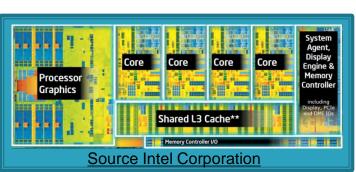
> > Source: LTEC Corporation [2]

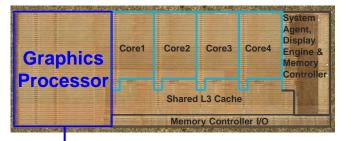
Ferric Approach

Ferric Technology TSMC Magnetic Cells Dialog Semiconductor PwrSoC

Haswell processor with

Could be Modular or Granular





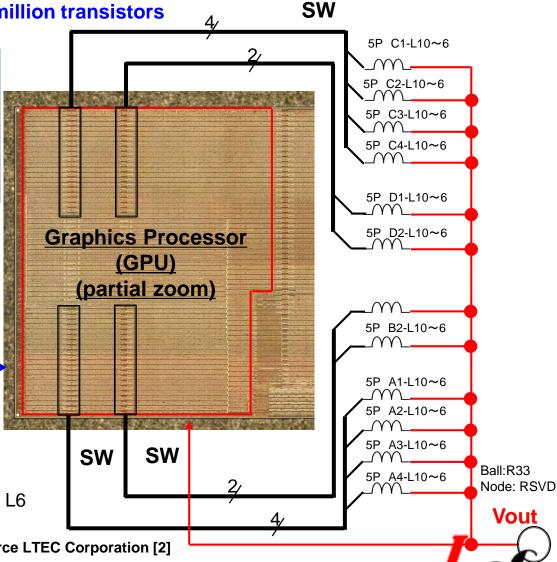
Haswell Granular PwrSoC: Sample Regulator

- Substrate Layer 10: Six inductors are connected in parallel
- 12-phase buck converter generates power to the GPU

Each switch is comprised of 3.9 million transistors

Naming convention: in "5P B2-L10~6"

5P means five inductors parallel connected

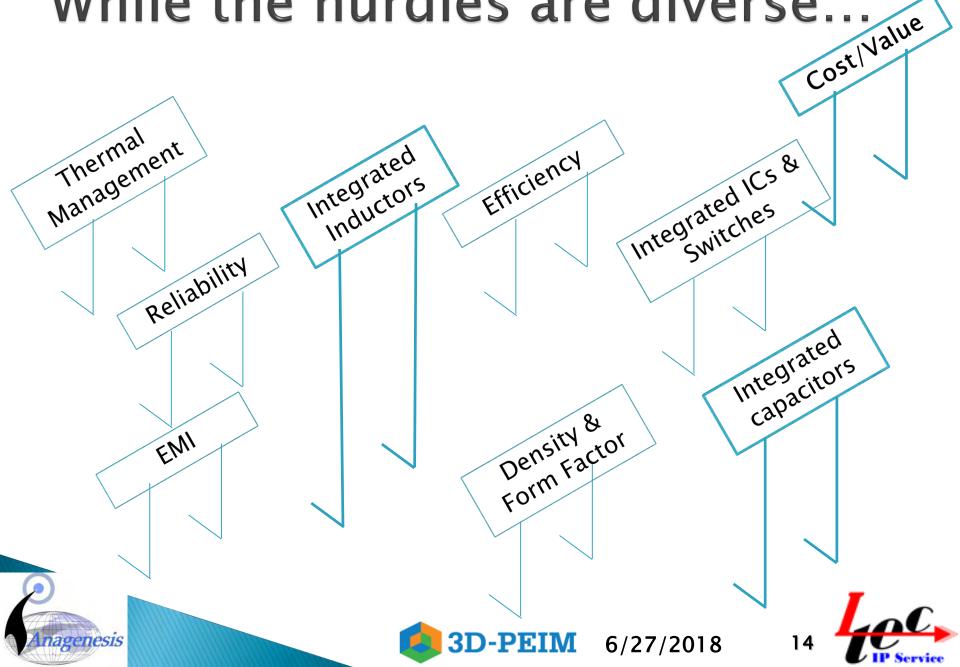

B2 is inductor identifier

L10 means Substrate Layer 10

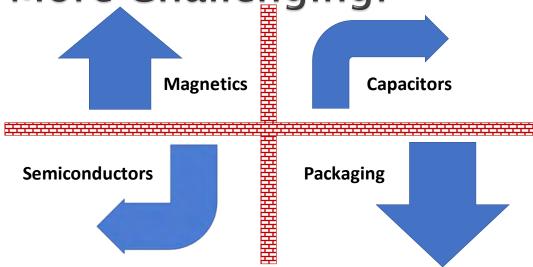
L10-6 means inductors on L10, L9, L7, and L6

are parallel connected

nagenesis



6/27/2018



While the hurdles are diverse.

...Heterogeneous Business Integration Can Be More Challenging!

- Available internal component sourcing but...Problems confronted
 - Independent business silos no cooperation and possible internal double margin
 - Conflicting financial incentives
 - Missing silo (e.g. magnetics semiconductor) -requiring external sourcing and again double margins - can be a cost
 - Non optimal designs external or internal design source limited

In summary

- Integrating semiconductor and power passive components has been a driving focus for most of the past 2 decades.
- Both PSiP and (near) PwrSoC products are a \$Billion commercial reality today with the major growth yet to happen.
- Concerted efforts we are seeing at 3D-PEIM is encouraging and I am sure is greatly appreciated by those who have brought us this far.

International Workshop on Power Supply On Chip October 17-19, 2018 NCTU, Hsinchu, Taiwan

Integrated Power Conversion and Power Management

Sessions

- Plenary Session
- Systems & Applications
- Topologies and Control
- Wide-Bandgap Semiconductors and Integration
- Integrated Magnetics
- Integrated Capacitive Devices
- System Integration, Packaging and Manufacturing
- Granular Power Supply

References

- 1. "Market Report: Power Supply in a Package (PSiP) & Power Supply on a Chip (PwrSoC) -The Power Density Challenge Continues 2015 2012," a market report by Anagenesis, Inc., Arnold Alderman and Ada Cheng, published October 2017.
- 2. Reference: LTEC Brochure: "LEARN ABOUT INTEGRATED POWER MANAGEMENT WITHIN HASWELL PROCESSORS" 14 H076_F https://www.ltecusa.com/haswell
- 3. "TECHNOLOGY REPORT: Current Developments in 3D Packaging With Focus on Embedded Substrate Technologies PSMA 3D Power Packaging Phase II A Special Project of the PSMA Packaging Committee," Louis Burgyan, Yuji Kakizaki, Yukata Hama, and Hideki Nakagawa LTEC Corporation, Arnold Alderman Anagenesis, Inc., Lars Böettcher & Thomas Löher Fraunhofer IZM, published by PSMA, March 2015.

